211 research outputs found

    Transcriptional Profiles of Leukocyte Populations Provide a Tool for Interpreting Gene Expression Patterns Associated with High Fat Diet in Mice

    Get PDF
    Microarray experiments in mice have shown that high fat diet can lead to elevated expression of genes that are disproportionately associated with immune functions. These effects of high fat (atherogenic) diet may be due to infiltration of tissues by leukocytes in coordination with inflammatory processes.The Novartis strain-diet-sex microarray database (GSE10493) was used to evaluate the hepatic effects of high fat diet (4 weeks) in 12 mouse strains and both genders. We develop and apply an algorithm that identifies "signature transcripts" for many different leukocyte populations (e.g., T cells, B cells, macrophages) and uses this information to derive an in silico "inflammation profile". Inflammation profiles highlighted monocytes, macrophages and dendritic cells as key drivers of gene expression patterns associated with high fat diet in liver. In some strains (e.g., NZB/BINJ, B6), we estimate that 50-60% of transcripts elevated by high fat diet might be due to hepatic infiltration by these cell types. Interestingly, DBA mice appeared to exhibit resistance to localized hepatic inflammation associated with atherogenic diet. A common characteristic of infiltrating cell populations was elevated expression of genes encoding components of the toll-like receptor signaling pathway (e.g., Irf5 and Myd88).High fat diet promotes infiltration of hepatic tissue by leukocytes, leading to elevated expression of immune-associated transcripts. The intensity of this effect is genetically controlled and sensitive to both strain and gender. The algorithm developed in this paper provides a framework for computational analysis of tissue remodeling processes and can be usefully applied to any in vivo setting in which inflammatory processes play a prominent role

    CYR61/CCN1: A Novel Mediator of Epidermal Hyperplasia and Inflammation in Psoriasis?

    Get PDF
    The complex pathogenesis of psoriasis is still not fully understood. The study by Sun et al. (2015) suggests that CYR61 (now named CCN1), a secreted matricellular protein, has a role in the pathogenesis of psoriasis, and thus targeting CCN1 represents a potential therapeutic strategy in its treatment

    Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients

    Full text link
    Abstract Background Psoriasis lesions are characterized by large-scale shifts in gene expression. Mechanisms that underlie differentially expressed genes (DEGs), however, are not completely understood. We analyzed existing datasets to evaluate genome-wide expression in lesions from 163 psoriasis patients. Our aims were to identify mechanisms that drive differential expression and to characterize heterogeneity among lesions in this large sample. Results We identified 1233 psoriasis-increased DEGs and 977 psoriasis-decreased DEGs. Increased DEGs were attributed to keratinocyte activity (56%) and infiltration of lesions by T-cells (14%) and macrophages (11%). Decreased DEGs, in contrast, were associated with adipose tissue (63%), epidermis (14%) and dermis (4%). KC/epidermis DEGs were enriched for genes induced by IL-1, IL-17A and IL-20 family cytokines, and were also disproportionately associated with AP-1 binding sites. Among all patients, 50% exhibited a heightened inflammatory signature, with increased expression of genes expressed by T-cells, monocytes and dendritic cells. 66% of patients displayed an IFN-γ-strong signature, with increased expression of genes induced by IFN-γ in addition to several other cytokines (e.g., IL-1, IL-17A and TNF). We show that such differences in gene expression can be used to differentiate between etanercept responders and non-responders. Conclusions Psoriasis DEGs are partly explained by shifts in the cellular composition of psoriasis lesions. Epidermal DEGs, however, may be driven by the activity of AP-1 and cellular responses to IL-1, IL-17A and IL-20 family cytokines. Among patients, we uncovered a range of inflammatory- and cytokine-associated gene expression patterns. Such patterns may provide biomarkers for predicting individual responses to biologic therapy.http://deepblue.lib.umich.edu/bitstream/2027.42/112670/1/12864_2012_Article_5257.pd

    Metalloproteinase-Mediated, Context-Dependent Function of Amphiregulin and HB-EGF in Human Keratinocytes and Skin

    Get PDF
    Human keratinocytes (KCs) express multiple EGF receptor (EGFR) ligands; however, their functions in specific cellular contexts remain largely undefined. To address this issue, first we measured mRNA and protein levels for multiple EGFR ligands in KCs and skin. Amphiregulin (AREG) was by far the most abundant EGFR ligand in cultured KCs, with >19 times more mRNA and >7.5 times more shed protein than any other family member. EGFR ligand expression in normal skin was low (<8‰ of RPLP0/36B4); however, HB-EGF and AREG mRNAs were strongly induced in human skin organ culture. KC migration in scratch wound assays was highly metalloproteinase (MP)- and EGFR dependent, and was markedly inhibited by EGFR ligand antibodies. However, lentivirus-mediated expression of soluble HB-EGF, but not soluble AREG, strongly enhanced KC migration, even in the presence of MP inhibitors. Lysophosphatidic acid (LPA)-induced ERK phosphorylation was also strongly EGFR and MP dependent and markedly inhibited by neutralization of HB-EGF. In contrast, autocrine KC proliferation and ERK phosphorylation were selectively blocked by neutralization of AREG. These data show that distinct EGFR ligands stimulate KC behavior in different cellular contexts, and in an MP-dependent fashion

    Psoriasis drug development and GWAS interpretation through in silico analysis of transcription factor binding sites

    Full text link
    BackgroundPsoriasis is a cytokine‐mediated skin disease that can be treated effectively with immunosuppressive biologic agents. These medications, however, are not equally effective in all patients and are poorly suited for treating mild psoriasis. To develop more targeted therapies, interfering with transcription factor (TF) activity is a promising strategy.MethodsMeta‐analysis was used to identify differentially expressed genes (DEGs) in the lesional skin from psoriasis patients (n = 237). We compiled a dictionary of 2935 binding sites representing empirically‐determined binding affinities of TFs and unconventional DNA‐binding proteins (uDBPs). This dictionary was screened to identify “psoriasis response elements” (PREs) overrepresented in sequences upstream of psoriasis DEGs.ResultsPREs are recognized by IRF1, ISGF3, NF‐kappaB and multiple TFs with helix‐turn‐helix (homeo) or other all‐alpha‐helical (high‐mobility group) DNA‐binding domains. We identified a limited set of DEGs that encode proteins interacting with PRE motifs, including TFs (GATA3, EHF, FOXM1, SOX5) and uDBPs (AVEN, RBM8A, GPAM, WISP2). PREs were prominent within enhancer regions near cytokine‐encoding DEGs (IL17A, IL19 and IL1B), suggesting that PREs might be incorporated into complex decoy oligonucleotides (cdODNs). To illustrate this idea, we designed a cdODN to concomitantly target psoriasis‐activated TFs (i.e., FOXM1, ISGF3, IRF1 and NF‐kappaB). Finally, we screened psoriasis‐associated SNPs to identify risk alleles that disrupt or engender PRE motifs. This identified possible sites of allele‐specific TF/uDBP binding and showed that PREs are disproportionately disrupted by psoriasis risk alleles.ConclusionsWe identified new TF/uDBP candidates and developed an approach that (i) connects transcriptome informatics to cdODN drug development and (ii) enhances our ability to interpret GWAS findings. Disruption of PRE motifs by psoriasis risk alleles may contribute to disease susceptibility.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/1/ctm2s4016901500545-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/2/ctm2s4016901500545-sup-0018.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/3/ctm2s4016901500545-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/4/ctm2s4016901500545.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155494/5/ctm2s4016901500545-sup-0009.pd

    Novel cytokine and chemokine markers of hidradenitis suppurativa reflect chronic inflammation and itch

    Get PDF
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/1/all13665-sup-0001-SupInfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/2/all13665_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148237/3/all13665.pd

    Molecular Dissection of Psoriasis: Integrating Genetics and Biology

    Get PDF
    Psoriasis is a common and debilitating disease of the skin, nails, and joints, with an acknowledged but complex genetic basis. Early genome-wide linkage studies of psoriasis focused on segregation of microsatellite markers in families; however, the only locus consistently identified resided in the major histocompatibility complex. Subsequently, several groups mapped this locus to the vicinity of HLA-C, and two groups have reported HLA-Cw6 itself to be the major susceptibility allele. More recently, the development of millions of single-nucleotide polymorphisms, coupled with the development of high-throughput genotyping platforms and a comprehensive map of human haplotypes, has made possible a genome-wide association approach using cases and controls rather than families. Taking advantage of these developments, we participated in a collaborative genome-wide association study of psoriasis involving thousands of cases and controls. Initial analysis of these data revealed and/or confirmed association between psoriasis and seven genetic loci—HLA-C, IL12B, IL23R, IL23A, IL4/IL13, TNFAIP3, and TNIP1—and ongoing studies are revealing additional loci. Here, we review the epidemiology, immunopathology, and genetics of psoriasis, and present a disease model integrating its genetics and immunology
    corecore